Nipping Bugs in the Bud — Eliminating Student Misconceptions in Introductory Computer Science Classes

Nivedita Chopra, advised by Roy Maxion and Robert Simmons

Background

Bugs are a major problem in software development,
and bugs in software that is widely used can have far-
reaching consequences, as was recently seen in the
case of the Heartbleed bug in OpenSSL. While slips in
syntax can be detected and fixed easily, oftentimes
bugs are caused by misconceptions in the
programmer's thought process. Such misconceptions
ought to be detected and subsequently remedied
early on, preferably in introductory and

intermediate programming classes, so as to ensure
that the programmers of tomorrow are much less
likely to commit certain kinds of errors.

Aim

Our aim is to catalog the bugs committed by students
in the Principles of Imperative Computation course
(15-122), which is taught in CO and C. By analyzing
these bugs, we hope to gain an insight into the
misconceptions behind them. Based on our analysis,
we will propose improved teaching methods to
eliminate these misconceptions.

Data

Bugs were obtained and recorded in three ways :

1) Using a Google form filled in by students.

2) Through observation of student code during lab
and office hours.

3) Through analysis of posts on Piazza, an online Q&A
forum for the class.

Methods

Each week, we analyzed the bugs seen in the previous
week, and attempted to classify them using the IEEE
Standard Classification for Software Anomalies
(2010), as a first step towards developing our own
taxonomy of bugs observed in introductory computer
science classes. For the common bugs seen each
week, we tried to determine the misconceptions that
led to the bug. We then proposed some changes to
the course for the Spring 2015 semester, that are
anticipated to eliminate or mitigate these
misconceptions

CATEGORIZATION OF BUGS OBSERVED IN 15-122

Logic Bug (as per the IEEE classification)

Traverse through a linked list performing a certain operation on each element
while (L->next != NULL) {
//do something;
L = L->next;
}
Bug : Misses the last element in the list

Data Bug (as per the IEEE classification)

Write a function to check if a given integer is in a linked list
bool is in(list L, int n) {
while(L->start != NULL) {
if(L->start->data == n) return true;
L->start = L->start->next;

}

return false;

}
Bug : Destroys the linked list during an effect-free operation

Interface Bug (as per the IEEE classification)

Write a function that removes the green component of a given pixel
Interface :
pixel make pixel(int a, int r, int g, int b);
int get green(pixel p);

Implementation :
typedef int pixel;

Client code (written by student) :
pixel remove green(pixel p) {
return (p & O0xFF00);

}
Bug : Relies on the implementation while writing client code, which should only

deal with the interface

Comprehension Bug (not seen in the IEEE classification)
1) Create the list containing 1, 2, and 4, in order, using the cons and nil functions
[list cons(int, list); list nil();]
list L = cons(1l, cons(2, cons(4)));
Bug : Fails to realize that the cons function takes two arguments

2) The offset is a signed 16 bit integer that is given as a two-byte operand to the

instruction. (Instructions are stored in an array of (unsigned) bytes (ubyte *P))
intlé _t ol = (1intlé6_t)(1int8 t)P[pc+l];
intlé t 02 = (intlé6 t)(int8 t)P[pc+2];
intl6 t offset = ((ol << 8) | 02);
Bug : Casts both o1 and o2 into signed integers to make resultant offset signed.

Sign extension on 02 may alter the final quantity.

Results

The bugs observed were logic bugs (60 instances),
data bugs (21), and interface bugs (7), as per the IEEE
Standard Classification for Software Anomalies
(2010). An additional category of bugs, with 32
observed instances, emerged here that was not
specified in the IEEE classification. These can be called
“comprehension errors.” Often, when a task is
described to students, they are unsure about which
paradigm or algorithm to use to accomplish it.
Students are often unfamiliar with reading
specifications, and are hence likely to misunderstand
them and to make incorrect assumptions while
programming. Due to having limited prior
programming experience, and possibly because they
are using new tools, students are often stumped by
error messages and warnings, both from the compiler
and from Autolab, which auto-grades submitted code.

Further Work

We noticed many bugs arising due to lack of attention
given to edge cases. We feel that encouraging
students to list edge cases before coding may enable
them to write more correct code, with fewer bugs
due to edge cases.

Based on the fact that many students committed the
same bugs, and that similar types of bugs were seen
throughout the semester, we feel that maintaining a
record of one’s bugs might help debug better. We are
planning to introduce the concept of a "Bug Diary" as
an optional, and highly recommended, experiment in
15-122 for Spring 2015.

Impact

We anticipate that the results of our research will
help eliminate many student misconceptions. This is
likely to improve the quality of code written by
students in further classes, and in their future careers.

References

“IEEE Standard Classification for Software Anomalies," IEEE Std 1044-2009 (Revision of
|IEEE Std 1044-1993), Jan. 7 2010.

Beizer, Boris. Software Testing Techniques. 2nd ed. 1990.

Saj-Nicole Joni, Elliot Soloway, Robert Goldman, and Kate Ehrlich. 1983. Just so stories:
how the program got that bug. SIGCUE Outlook 17, 4 (September 1983), 13-26.



